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Abstract 

Chang and Zhang (2002, 2003) proposed several baseline criteria for assessing the severity of 

possible test security violations for computerized tests with high-stakes outcomes. However, 

these criteria were obtained from theoretical derivations that assumed uniformly randomized 

item selection. The current study investigated potential damage caused by organized item theft in 

computerized adaptive testing (CAT) for two more realistic item selection methods, the 

maximum item information and the a-stratified, while using the randomized method as a baseline 

for comparison. The results of the study indicated that the damage could be very severe, 

especially when the thieves took the test in the early stage of utilization of an item pool. Among 

the three CAT methods examined in this study, the maximum item information method with 

Sympson-Hetter exposure control was most vulnerable to organized item theft. 

Key words: Test security, computerized adaptive testing, organized item theft, item selection 

methods 
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Introduction 

Computerized adaptive testing (CAT) has the capability of administering a test to small 

groups of examinees at frequent adjacent time intervals, which is referred to as continuous 

testing. This provides examinees with the flexibility of scheduling a test. For example, the 

computerized Graduate Record Examinations® (GRE®) General Test is offered to examinees 

year-round in the United States, Canada, and many other countries, whereas the traditional 

paper-and-pencil (P&P) version of the same test was administered three times a year but only 

twice in some Asian countries. However, the weakness of CAT also lies with continuous testing 

because examinees who take a test earlier may share information with examinees who will take 

the test later, which increases the risk that many items may become known to examinees before 

they actually take the test. The activities of memorizing and sharing test information among 

examinees can inflate test scores of examinees who have gained preknowledge of the test while 

punishing honest examinees and hence threaten the validity of a test.  

To reduce the impact of item sharing, item exposure rates should be controlled. The 

exposure rate of an item is defined as the ratio between the number of times the item is 

administered and the total number of examinees. A closely related index to the item exposure 

rate is the test overlap rate, which was originally defined as the average of the percentage of 

items shared by a pair of examinees across all such pairs (Way, 1998; Chen, Ankenmann, & 

Spray, 2003). Chang and Zhang (2002, 2003) generalized the definition of test overlap rate from 

the original two examinees to a group of  examinees. They also derived the theoretical 

distributions for item sharing and item pooling indices. According to Chang and Zhang, many 

rules currently employed in large-scale CAT programs were obtained from previous out-of-date 

empirical studies. For example, Stocking’s rule of thumb (see Way, 1998) requires that an item 

pool size should be 12 times the test length. These rules may need to be modified and improved; 

moreover, new rules need to be developed. 

m

Clearly, CAT test security issues must be studied in a broad context, and new emphasis 

should be placed on organized item theft. The objective of this paper is to empirically investigate 

how organized item theft could cause damage to CAT. Different CAT designs may yield 

different item exposure and test overlap rates, and our investigation focused on two item 

selection methods that have been researched extensively. One is the maximum information 

method (Lord, 1980) and the other is the a-stratified method (e.g., Chang & Ying, 1999; Chang, 
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Qian, & Ying, 2001; Yi & Chang, 2003). The number of compromised items is also highly 

sensitive to the item selection method adopted in the CAT design. To establish a benchmark, an 

item selection algorithm that is based on purely randomized item selection was used as a 

baseline. The randomized item selection method equalizes item exposure rates and hence yields 

the best level of test security when compared with all other item selection methods. Our research 

interest was in assessing the severity of possible test security violations caused by organized item 

theft. More specifically, for a given CAT design, how many items could be compromised by 

forming an organized item theft group with differing numbers of thieves? For a collection of 

compromised items, what would be the possibility of each examinee encountering these items in 

his/her test? Since the process of examinees taking a CAT can be modeled as a time series, it is 

interesting to explore the time effect of sending thieves to take tests. Would it cause more severe 

damage to send thieves to take tests earlier in the life of an item pool than sending them later? In 

this study, the term damage had a broad sense, that is, the possibility of examinees encountering 

compromised items. Obviously, the use of compromised items by some examinees may lead to 

test score inflation. However, it may be too complicated to model cheating behavior as to who 

will use the compromised items and who will not. As an initial empirical investigation, we only 

focused on organized item theft; therefore, our simulation design was to randomly select a group 

of examinees as thieves who intentionally memorize test items. 

This paper first briefly describes the CAT methods included in the study. This is followed 

by a section summarizing the results from Chang and Zhang’s (2002) theoretical derivations. The 

next section is on methodology and describes the details of the simulation procedure involved in 

the study. The last section contains concluding remarks and also discusses future research 

directions. 

CAT Methods Investigated 

One of the most commonly used item selection methods in CAT is based on maximum 

item information, which yields the best measurement efficiency; however, it does not include any 

item exposure control mechanism. Therefore, this method needs to be incorporated with an item 

exposure control procedure to achieve better test security management. Different methods of item 

exposure control have been proposed by various researchers (e.g., Davey & Parshall, 1995; Hetter 

& Sympson, 1997; Stocking & Lewis, 1998; Sympson & Hetter, 1985; Thomasson, 1995). The 

Sympson-Hetter (SH) procedure uses item exposure control parameters to probabilistically control 
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the frequencies with which items are administered (Hetter & Sympson, 1997; Sympson & Hetter, 

1985). SH exposure control parameters are obtained through a series of simulated CAT 

administered to a target population. After obtaining the exposure control parameters, they are used 

in a CAT design to control the frequency with which items are administered. The maximum item 

information method with the SH item exposure control (MII-SH), which incorporates SH into the 

maximum item information selection method, is one of the most widely used item selection 

methods for limiting the items’ exposure rates to a prespecified value. 

The a-stratified methods (Chang & Ying, 1999; Chang et al., 2001; Yi & Chang, 2003) 

select items from a stratified pool based on the closeness between item difficulty and the current 

CAT ability estimate. In the a-stratified method with content blocking (STRC; Yi & Chang, 

2003), an item pool is first divided into groups based on the content specifications of the pool. 

Within each content group, the steps of the a-stratified with b blocking method as described in 

Chang et al. (2001) are followed to obtain several strata. The resulting stratified pool has the 

following three characteristics: (a) the content coverage of each stratum is similar to that of the 

whole item pool; (b) the distribution of b-parameters in each stratum is as similar as possible to 

that of the item pool; and (c) the average value of a-parameters increases across strata. The test is 

divided into several stages, one per stratum. STRC then selects items from the corresponding 

strata based on the match between item difficulty and an examinee's current CAT ability 

estimate. Items from the stratum with low average a-values are administered in the early stages 

of the test and items with high average a-values are used during the later stages. The SH 

exposure control procedure can also be incorporated into STRC (STRC-SH) to achieve the goal 

of limiting the maximum observed item exposure rate to a prespecified level.  

The randomized item selection method, as indicated by its name, randomly selects items 

from the whole item pool. It results in roughly equalized item exposure rates; thus, there is no 

need to incorporate SH in this method. 

Chang and Zhang’s Theoretical Results 

Chang and Zhang (2002) derived the item sharing and item pooling indices to compute 

the degree of possible test security violations based on the randomized item selection procedure. 

For α  randomly sampled examinees, let  be the number of common items shared by these 

examinees. The item sharing index is then defined as the expected value of , that is, . 

αX

αX ][ αXE
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Item pooling, on the other hand, is when one examinee (beneficiary) gathers information from 

several examinees who have taken the test (nonbeneficiaries). Let  be the number of items one 

examinee can obtain from  examinees. The expectation of , , is the item pooling 

index. With a randomized item selection procedure, Chang and Zhang derived the theoretical 

distributions for both and  for any given 

αY

α αY ][ αYE

αX αY α .  

Since test overlap rates are highly sensitive to methods used in item selection, ability 

estimation, and item exposure control, one must search for the most promising candidate from 

several possible CAT designs. Chang and Zhang’s indices can serve as a benchmark for 

practitioners to evaluate a particular combination of testing settings. The discrepancy between 

the theoretical lower bounds and the observed rates obtained from a specific CAT design can 

provide information about the security prospects of this design. A large difference indicates the 

selected design needs to be improved to reduce the observed test overlap rate, while a small 

discrepancy demonstrates little improvement is needed. 

Chang and Zhang (2003) extended their research in examining the issue by asking how 

many thieves are needed to compromise a certain proportion of an item pool. Their findings 

indicated that potential test security violations can be lessened if a large number of items are 

included in an item pool. For example, with an item pool of 1,000 items, if each thief can 

memorize 20 items, then 34 thieves are needed to compromise 50% of the item pool. However, if 

the item pool consists of 500 items, and each thief still can memorize 20 items, then only 17 

thieves are needed to compromise 50% of the item pool. 

Chang and Zhang’s (2002, 2003) research focused on computerized tests using a 

randomized item selection procedure. Empirical research is needed to investigate the potential 

damage caused by organized item theft in CAT using more realistic CAT item selection 

methods. The findings of such research can provide guidance to practitioners in designing more 

secure CAT. 

Simulation Design 

Simulation studies were conducted to investigate the effects of applying different 

strategies in organized item theft in CAT when two item selection methods were used, the MII-

SH and STRC-SH methods. The randomized item selection method was also used to serve as a 

baseline for comparison. The item pool consists of 480 multiple-choice items from a large-scale 
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achievement test. There are three content areas in this test, in which 40% of the items are from 

content area one, and 30% of the items are from content areas two and three. The three-

parameter logistic (3-PL) item response theory (IRT) model was assumed and the BILOG 

computer program (Mislevy & Bock, 1982) was used to calibrate the item parameters. The 

means of the calibrated a-, b-, and c-parameters are 1.056, 0.111, and 0.191, with standard 

deviations of 0.347, 1.060, and 0.085, respectively. 

CAT Simulations 

Ten thousand θ values were generated from a standard normal distribution. For each 

simulee, a fixed length CAT of 40 items was simulated. A content control procedure that uses a 

modified multinomial model as described in Yi and Chang (2003) was implemented as part of 

the CAT methods so that each simulated CAT consists of about 40% items of content area one 

and 30% items from each of the other two content areas. 

Following the steps in Yi and Chang (2003), the item pool was stratified into four strata 

for the STRC-SH method. The first item was randomly selected from a list of 10 optimal items 

assuming an examinee's initial ability estimate of -1, without content balancing constraints. More 

specifically, for STRC-SH, 10 items were selected from the first stratum according to the closest 

match between item difficulty and the ability estimate of -1; for the MII-SH procedure, the 10 

most informative items were selected at the ability estimate of -1; and for the randomized 

method, 10 items were randomly selected at the ability estimate of -1. The first item was then 

randomly selected from these 10 items.  

The rest of the items from the designated content areas were selected based on the item 

selection criteria endorsed by each of the methods. For STRC-SH, the next item was selected if 

the following two conditions were satisfied: (a) the item had the closest match between item 

difficulty and the current CAT ability estimate; and (b) a uniform random number was less than 

or equal to the item exposure control parameter. For MII-SH, the next item was selected if the 

following two conditions were met: (a) the item had the maximum information at the current 

CAT ability estimate; and (b) a uniform random number was less than or equal to the item 

exposure control parameter. For the randomized procedure, the next item was randomly selected 

from the whole item pool. For both the STRC-SH and MII-SH procedures, item exposure control 

parameters were obtained through a series of simulated CATs administered to 10,000 simulees, 
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and the maximum item exposure rate was set at 0.20. If the second condition for item selection 

listed previously was not met, then the next optimal item was selected and its exposure control 

parameter was compared to a new uniform random number.  

The expected a posterior (EAP) method was used to estimate ability initially, until at least 

one correct and one incorrect item response were obtained, and five items had been administered. 

Afterwards, maximum likelihood estimation (MLE) was used. 

Thieves and Compromised Items 

Examinees who intentionally memorize items during testing and then share these items 

with other examinees who will take the test later were defined as thieves in this study. Based on 

the items administered to the 10,000 simulees, the thieves and items compromised by the thieves 

were randomly selected from the population and the items administered to these thieves, 

respectively. The numbers of thieves were set at 10, 20, and 30, while the number of items that a 

thief could memorize was 10. There were four ways to design the time when the thieves were 

actually taking the tests; the thieves randomly appeared in: (a) the 10,000 simulees; (b) the first 

1,000 simulees; (c) the first 5,000 simulees; and (d) the last 5,000 simulees. This design takes 

consideration of the effect of time in assessing the severity of organized item theft occurred for 

different time sequences. In our simulation, we first randomly selected a thief, and then 10 out of 

the 40 items administered to the thief were randomly selected as the compromised items. 

Evaluation Criteria 

The number of items falling into various ranges of the observed item exposure rate (r) 

was summarized. The  index, a measure used to quantify the equalization of item exposure 

rates, was computed:  

2χ

NL

NLr
N

i
i∑

=

−
=χ 1

2

2
)(

, (1) 

and 

M
ir

th

i
usedisitemthetimesofnumber

= , (2) 
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where N represents the size of an item pool, L denotes the length of a test, and M  is the number 

of examinees. Note that NL  denotes a desirable uniform rate for all items, and Equation (2) 

represents the observed item exposure rate. The observed test overlap rate was computed as the 

average of the percent of the common items shared by a random pair of examinees across all 

such pairs.  

Measurement precision is usually evaluated based on the difference between the 

estimated and true θ  value. In this study, we computed bias and root mean square error (RMSE) 

to evaluate the measurement precision. 

M
bias

M

m
mm∑

=

θ−θ
= 1

)ˆ(
, (3) 

and 

∑
=

θ−θ=
M

m
mmM

RMSE
1

2)ˆ(1 , (4) 

where M  is the number of examinees,  is the estimated ability of examinee m 

( ), and  is the true ability of this examinee. The correlation coefficient between 

 and  ( ) was calculated when evaluating the overall measurement precision. The 

conditional bias and RMSE were obtained at nine equally spaced 

mθ̂

Mm ,,2,1 …= mθ

mθ̂ mθ
mm θθ

ρ ,ˆ

θ  points from –2 to 2 in 

increments of 0.5 with 10,000 replications at each of the θ  points. 

The total number of compromised items obtained from each condition and the average 

number of compromised items each examinee encountered were calculated. The damage caused 

by the compromised items can be quantified as the average number of compromised items each 

examinee can encounter after thieves having gathered information from taking the test. Based on 

the derivation of Zhang and Chang (2005), assuming an examinee takes a test at time , t ( )iX t  

represents if the  item administered to the examinee has been compromised, that is,  thi

⎩
⎨
⎧

=
dcompromisenotisiitem

dcompromiseisiitem
tXi ,0

,1
)( . (5) 
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Let  be the probability of {)|( tiP ( ) 1}iX t = , that is, }1)({Pr)|( == tXobtiP i . Let  be the 

number of items in a test, 

L

1
( )L

ii
X t

=∑  is then the number of compromised items administered to 

an examinee at time t. Obviously, its expectation is  

∑ ∑= =
=

L

i

L

ii tiPtXE
1 1

)|()]([ ,  (6) 

which is defined by Zhang and Chang as the expected number of compromised items 

administered to an examinee at time . The cumulative distribution of the examinees 

encountering different number of compromised items was also graphed. 

t

Results 

Table 1 contains the descriptive statistics for the item parameters for the whole item pool 

and for the four strata, respectively. The content coverage of each stratum is similar to that of the 

full item pool, that is, 40% of the items are from content area one and 30% of the items are from 

content areas two and three, respectively. As indicated in Table 1, the distribution of b-

parameters closely matches that of the whole item pool, and the value of the a-parameters 

increases across the strata in the stratified pool. 

Based on the number of items administered at least once in the simulated CATs, Table 2 

contains descriptive information on observed item exposure rates across the methods. All the 480 

items are administered at least once with both the STRC-SH and randomized methods, while 332 

items (69%) are used in MII-SH. MII-SH has a larger mean (0.120) and standard deviation 

(0.082) than those of STRC-SH (0.083; 0.043), and randomized has the best item exposure rate 

(0.063; 0.006). The minimum item exposure rate is 0.000 for MII-SH, 0.018 for STRC-SH, and 

0.054 for randomized, while the maximum item exposure rate is 0.210 (MII-SH), 0.214 (STRC-

SH), and 0.107 (randomized), respectively. 

Figure 1 displays the number of items falling into different ranges of the item exposure 

rate. As expected, the randomized method has the best item exposure control and pool usage, 

while STRC-SH does not have any items that are not administered. MII-SH, on the other hand, 

results in a large number of items that are not used (about 31%). The SH procedure is 

incorporated with the STRC and MII methods; therefore, the maximum item exposure rate is 
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approximately controlled at the prespecified 0.20 level. There are some items that exceeded the 

0.20 level because of the probabilistic nature of the SH procedure. 

Table 1 

Descriptive Statistics for Item Parameters of the Whole Item Pool and the Four Strata 

 Parameter N Mean SD Minimum Maximum 

Item pool 

 a 480 1.056 0.347 0.193 2.685 
 b 480 0.111 1.060 -2.970 2.475 
 c 480 0.191 0.085 0.035 0.500 

Four strata 

1st stratum a 120 0.766 0.220 0.193 1.550 
2nd stratum  120 0.971 0.230 0.444 1.609 
3rd stratum  120 1.138 0.256 0.567 1.852 
4th stratum  120 1.348 0.363 0.705 2.685 
1st stratum b 120 0.111 1.058 -2.540 2.308 
2nd stratum  120 0.110 1.087 -2.970 2.475 
3rd stratum  120 0.111 1.051 -2.800 2.098 
4th stratum  120 0.113 1.055 -2.370 2.323 
1st stratum c 120 0.195 0.077 0.040 0.500 
2nd stratum  120 0.187 0.092 0.035 0.500 
3rd stratum  120 0.194 0.082 0.071 0.474 
4th stratum  120 0.190 0.088 0.049 0.473 

Table 2 

Descriptive Statistics of Observed Item Exposure Rates Across Methods 

 Descriptive statisticsa 
Method N Mean SD Minimum Maximum 
STRC-SH 480 0.083 0.043 0.018 0.214 
MII-SH 332 0.120 0.082 0.000 0.210 
Randomized 480 0.063 0.006 0.054 0.107 

a Descriptive statistics are obtained based on the number of items that are administered at least once. 
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Figure 1. Number of items falling into various ranges of observed item exposure rates (r) 

across methods. 

Table 3 presents the overall measurement precision and item pool usage for the CAT 

methods. MII-SH results in slightly better RMSE and correlation (0.226; .976) than that of 

STRC-SH (0.250; .971), but worse item pool usage. The difference in measurement precision is 

relatively small. However, the difference in item pool usage between MII-SH and STRC-SH is 

substantial. MII-SH results in larger  (44.007) and observed test overlap rate (17.493%) than 

STRC-SH (10.870 and 10.589%). The randomized method has the best item pool usage with a 

 of 0.082 and test overlap rate of 8.341% but the worst measurement precision (0.421; .930). 

2χ

2χ

Table 3 

Overall Measurement Precision and Item Pool Usage Across Methods 

 Measurement precision and item pool usage 

Method Bias RMSE 
mm θθ

ρ ,ˆ  χ2 Overlap 

STRC-SH -0.002 0.250 .971 10.870 10.589% 

MII-SH -0.005 0.226 .976 44.007 17.493% 

Randomized -0.029 0.421 .930 0.082 8.341% 
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The conditional measurement precision was computed at nine ability points from -2 to 2 

in increments of 0.5 with 10,000 replications at each of the ability points. Figure 2 presents the 

conditional bias and RMSE, which shows that MII-SH results in slightly better conditional bias 

than STRC-SH but similar RMSE. The randomized method again provides the worst conditional 

measurement precision. 
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Figure 2. Conditional bias and RMSE across methods. 
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The total number of compromised items along with the descriptive statistics of the a-, b-

parameters and item exposure rates of these items resulted from each condition are listed in 

Table 4. The number of compromised items increases as the number of thieves increases. There 

are fewer compromised items when MII-SH is used, but if one divides this number by the 

number of items that are administered, MII-SH has the largest proportion of compromised items. 

The difference of the number of compromised items resulting from all the conditions is small. 

Table 4 also lists the proportion of the item pool these compromised items comprise, which is 

computed based on the effect size of the pool, that is, the items that are administered at least 

once. According to the proportion of the item pool these compromised items comprise, STRC-

SH actually results in a smaller proportion than that of MII-SH. The average item exposure rate 

of these compromised items for the STRC-SH method is smaller than that of MII-SH, while the 

randomized procedure has the smallest average item exposure rate. 

Table 4 

Descriptive Statistics for a-, b-Parameters, and Item Exposure Rate (r) of the Compromised 

Items 

Methods Condition # of 
thieves N Item 

pool a Parameters Mean SD Minimum Maximum 

STRC-SH All 
10,000 

10 87 0.181 a 1.005 0.316 0.418 1.808 

     b -0.480 1.017 -2.970 1.733 
     r 0.102 0.052 0.022 0.206 
MII-SH  10 77 0.232 a 1.096 0.359 0.416 2.447 
     b -0.428 0.923 -2.400 1.435 
     r 0.167 0.057 0.008 0.207 
Randomized  10 94 0.196 a 1.049 0.363 0.193 1.794 
     b 0.236 1.067 -2.540 2.308 
     r 0.062 0.002 0.056 0.067 
STRC-SH All 

10,000 
20 151 0.315 a 1.019 0.350 0.418 2.685 

     b -0.264 1.090 -2.970 1.733 
     r 0.099 0.051 0.021 0.206 
MII-SH  20 132 0.398 a 1.160 0.384 0.416 2.685 
     b -0.181 1.028 -2.400 1.733 
     r 0.167 0.055 0.008 0.208 

(Table continues) 
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Table 4 (continued) 

Method Condition # of 
thieves N Item 

pool a Parameters Mean SD Minimum Maximum 

Randomized  20 169 0.352 a 1.049 0.354 0.193 1.852 
     b 0.105 1.098 -2.970 2.308 
     r 0.062 0.002 0.056 0.067 
STRC-SH All 

10,000 
30 206 0.429 a 1.036 0.332 0.418 2.685 

     b -0.163 1.020 -2.970 1.733 
     r 0.099 0.049 0.021 0.214 
MII-SH  30 163 0.491 a 1.196 0.373 0.416 2.685 
     b -0.086 0.975 -2.400 1.733 
     r 0.170 0.052 0.008 0.209 
Randomized  30 225 0.469 a 1.055 0.347 0.193 2.107 

     b 0.161 1.073 -2.970 2.308 
     r 0.062 0.002 0.056 0.067 
STRC-SH First 

1,000 
10 91 0.190 a 1.001 0.316 0.418 1.808 

     b -0.491 0.849 -2.800 1.170 
     r 0.110 0.051 0.022 0.214 
MII-SH  10 81 0.244 a 1.149 0.342 0.515 2.447 
     b -0.303 0.821 -2.400 1.435 
     r 0.176 0.049 0.008 0.207 
Randomized  10 96 0.200 a 1.016 0.327 0.487 1.790 
     b 0.183 1.032 -2.970 2.323 
     r 0.062 0.002 0.055 0.066 
STRC-SH First 

1,000 
20 159 0.331 a 1.000 0.347 0.193 2.685 

     b -0.370 1.035 -2.970 2.107 
     r 0.103 0.052 0.018 0.214 
MII-SH  20 133 0.401 a 1.155 0.350 0.416 2.478 
     b -0.185 0.968 -2.400 1.903 
     r 0.170 0.052 0.008 0.209 
Randomized  20 165 0.344 a 1.063 0.337 0.418 2.135 
     b 0.303 1.052 -2.970 2.323 
     r 0.062 0.002 0.055 0.069 
STRC-SH First 

1,000 
30 208 0.433 a 1.015 0.332 0.193 2.685 

     b -0.265 0.966 -2.970 2.107 
     r 0.100 0.048 0.018 0.214 

(Table continues) 
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Table 4 (continued) 

Method Condition # of 
thieves N Item 

pool a Parameters Mean SD Minimum Maximum 

MII-SH  30 170 0.512 a 1.180 0.350 0.416 2.685 
     b -0.087 0.947 -2.400 1.903 
     r 0.169 0.051 0.008 0.209 
Randomized  30 218 0.454 a 1.059 0.336 0.375 2.135 
     b 0.270 1.096 -2.970 2.475 
     r 0.062 0.002 0.055 0.070 
STRC-SH First 

5,000 
10 85 0.177 a 1.005 0.330 0.418 2.107 

     b -0.455 1.105 -2.970 1.473 
     r 0.104 0.055 0.022 0.206 
MII-SH  10 83 0.250 a 1.098 0.358 0.416 2.447 
     b -0.347 0.992 -2.400 1.480 
     r 0.169 0.053 0.008 0.207 
Randomized  10 93 0.194 a 1.020 0.359 0.487 1.852 
     b 0.071 1.114 -2.970 2.308 
     r 0.062 0.002 0.057 0.067 
STRC-SH First 

5,000 
20 160 0.333 a 1.044 0.339 0.405 2.685 

     b -0.214 1.021 -2.970 1.620 
     r 0.105 0.051 0.022 0.214 
MII-SH  20 143 0.431 a 1.187 0.361 0.416 2.685 
     b -0.086 0.978 -2.970 1.733 
     r 0.173 0.049 0.008 0.209 
Randomized  20 164 0.342 a 1.024 0.339 0.193 1.852 
     b 0.086 1.065 -2.970 2.308 
     r 0.062 0.002 0.056 0.067 
STRC-SH First 

5,000 
30 214 0.446 a 1.063 0.345 0.405 2.685 

     b -0.060 1.029 -2.970 2.323 
     r 0.101 0.050 0.022 0.214 
MII-SH  30 173 0.521 a 1.197 0.361 0.416 2.685 
     b -0.015 0.984 -2.970 1.896 
     r 0.168 0.055 0.008 0.209 
Randomized  30 228 0.475 a 1.043 0.346 0.193 2.685 
     b 0.093 1.039 -2.970 2.323 
     r 0.062 0.002 0.055 0.069 

(Table continues) 
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Table 4 (continued) 

Method Condition # of 
thieves N Item 

pool a Parameters Mean SD Minimum Maximum 

STRC-SH Last 
5,000 

10 87 0.181 a 1.121 0.350 0.416 2.685 

     b 0.368 0.990 -1.710 2.323 
     r 0.096 0.041 0.032 0.203 
  10 89 0.268 a 1.266 0.342 0.793 2.685 
MII-SH     b 0.376 0.944 -1.970 2.308 
     r 0.166 0.054 0.006 0.209 
  10 88 0.183 a 1.065 0.328 0.193 1.748 
Randomized     b 0.091 0.986 -2.970 1.944 
     r 0.062 0.002 0.056 0.067 
 Last 

5,000 
20 156 0.325 a 1.076 0.335 0.416 2.685 

STRC-SH     b 0.050 0.932 -2.420 2.323 
     r 0.101 0.046 0.018 0.214 
MII-SH  20 142 0.428 a 1.200 0.323 0.649 2.685 
     b 0.096 0.963 -2.070 2.308 
     r 0.166 0.055 0.006 0.209 
Randomized  20 163 0.340 a 1.073 0.337 0.193 1.852 
     b 0.103 0.995 -2.970 1.944 
     r 0.062 0.002 0.055 0.067 
STRC-SH Last 

5,000 
30 218 0.454 a 1.110 0.338 0.416 2.685 

     b 0.201 0.921 -2.420 2.323 
     r 0.097 0.045 0.018 0.214 
MII-SH  30 170 0.512 a 1.196 0.332 0.649 2.685 
     b 0.178 0.994 -2.070 2.308 
     r 0.158 0.063 0.000 0.209 
Randomized  30 214 0.446 a 1.047 0.341 0.193 2.107 
     b 0.094 1.039 -2.970 2.475 
     r 0.062 0.002 0.055 0.067 

a Proportion of item pool is computed based on the number of items that have been administered 

at least once. 

Table 5 contains the average number of compromised items encountered by examinees 

under each condition. The average number of compromised items increases as the number of 

thieves increases. MII-SH results in a higher average number of compromised items than that of 
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STRC-SH, while the randomized method has the smallest average number of compromised 

items. The difference between the average number of compromised items resulting from the 

randomized and STRC-SH methods is about two, and this difference can be as high as eight 

between STRC-SH and MII-SH. The damage caused by organized item theft is the most severe 

when the thieves appear in the first 1,000 examinees. The average number of compromised items 

examinees encounter can be as high as about 29 with the MII-SH method when there are 30 

thieves coming from the first 1,000 examinees, and this number is about 14 when there are 10 

thieves. The damage is even more severe when the thieves come from the first 5,000 examinees 

rather than from all 10,000 examinees, while the damage is the smallest if the thieves are from 

the last 5,000 examinees. The results presented in Table 5 indicate that if organized item theft 

happens at the beginning of a CAT, the damage caused by such an act will be the most severe 

because examinees who take the test later would potentially get benefits by studying these 

compromised items.  

Table 5 

Average Number of Compromised Items Each Examinee Encountered Under Different 

Conditions 

Method Condition Number of thieves Number of  
compromised items 

STRC-SH All 10,000 10 5.803 
MII-SH   8.675 
Randomized   4.889 
STRC-SH  20 10.277 
MII-SH   16.102 
Randomized   9.125 
STRC-SH  30 14.186 
MII-SH   21.318 
Randomized   12.172 
STRC-SH First 1,000 10 9.705 
MII-SH   13.807 
Randomized   7.660 

(Table continues) 
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Table 5 (continued) 

Method Condition Number of thieves Number of  
compromised items 

STRC-SH  20 15.726 
MII-SH   21.896 
Randomized   13.125 
STRC-SH  30 20.065 
MII-SH   27.821 
Randomized   17.318 
STRC-SH First 5,000 10 7.906 
MII-SH   12.715 
Randomized   6.812 
STRC-SH  20 14.447 
MII-SH   21.525 
Randomized   11.626 
STRC-SH  30 18.705 
MII-SH   25.574 
Randomized   16.267 
STRC-SH Last 5,000 10 3.260 
MII-SH   5.933 
Randomized   2.836 
STRC-SH  20 5.668 
MII-SH   8.865 
Randomized   4.769 
STRC-SH  30 7.663 
MII-SH   10.666 
Randomized   6.306 

Figures 3 to 5 display the cumulative percentage of compromised items calculated from 

the 10,000 simulated examinees under different simulation conditions. The damage caused by 

organized item theft in terms of the cumulative percentage is affected by the sequence of thieves’ 

appearances (e.g., thieves are randomly selected from the first 1,000 examinees), the number of 

thieves, and the CAT designs. The damage is the most severe if the thieves appear at the early 

stage of the testing whereas it is the least severe if they appear at the later stage. Among the three 

CAT designs, the MII-SH method was affected the most by the simulated item theft activity. As 
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expected, the damage was more severe if there were more thieves. As shown in Figure 5, about 

20% of the examinees encountered fewer than 11 compromised items with the STRC-SH method 

if 30 thieves appeared in the first 1,000 examinees, while about 21% of the examinees 

encountered fewer than 24 compromised items with MII-SH. 

Discussion 

Organized item theft can cause serious damage to a large-scale CAT program that has 

high-stakes outcomes. Chang and Zhang (2002, 2003) initiated a theoretical basis for examining 

the severity of possible test security violations of organized item theft in large-scale 

computerized testing. Based on the randomized item selection assumption, Chang and Zhang 

derived indices for evaluating the severity of possible test security violations, which can serve as 

lower bounds for test overlap rates. The theoretical results may help practitioners to design more 

secure computerized tests. A test security panel may evaluate the discrepancy between the 

theoretical lower bound and the observed test overlap rate generated by the item selection 

algorithm under investigation. A large discrepancy indicates that the algorithm needs to be 

further improved by lowering the observed test overlap rate, and a small difference shows that 

the item selection algorithm generates satisfactory results. 

According to Chang and Zhang (2002, 2003), the damage caused by organized item theft 

can be lessened by increasing item pool size and selecting items more evenly. In practice, 

however, the randomized item selection procedure is never used due to its poor measurement 

precision. The goal of the current research was to assess the severity caused by organized item 

theft using two more realistic CAT designs while employing the randomized item selection 

method as a baseline for comparison. The results of the simulation study indicated that the 

damage increases as the number of thieves increases. The degree of the damage is also related to 

the time when the item theft takes place. If the thieves were administered tests earlier, the 

damage was more severe than when they took tests later. The damage would be severe even if 

the thieves were randomly appointed among the 10,000 simulees. However, the damage became 

less severe when item theft occurred after 50% of the total numbers of examinees had taken the 

test. The conclusion held for all three item selection methods regardless how many thieves were 

involved. 
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Figure 3. Cumulative percentage of number of compromised items with 10 thieves 

randomly selected. 
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Figure 4. Cumulative percentage of number of compromised items with 20 thieves 

randomly selected. 
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Figure 5. Cumulative percentage of number of compromised items with 30 thieves 

randomly selected. 

21 



 

Chang and Zhang (2002, 2003) proposed to use the expected number of compromised 

items as a vital test security index. However, our simulation results revealed that although the 

total number of compromised items resulting from MII-SH is smaller than the numbers resulting 

from both STRC-SH and the randomized method, the disadvantages of using MII-SH are much 

higher. When MII-SH is used, the number of compromised items examinees encounter is much 

higher than with STRC-SH and the randomized methods. The reason is that the number of 

unadministered items using MII-SH is larger than either STRC-SH or the randomized methods, 

which makes the actual effective item pool size for MII-SH much smaller. MII-SH yields the 

highest observed average test overlap rate, and the likelihood that an examinee will access 

compromised items is much higher, which explains in the simulation results why examinees 

could come across more compromised items. The STRC-SH method, on the other hand, results 

in much better test security control because it has a better item pool usage and smaller test 

overlap rate. Clearly, the potential damage caused by organized item theft is less severe. 

The effect size of an item pool has played an essential role in our investigation. It is well-

known that maximum information-based item selection methods tend to select the optimal items 

more often and typically leave a large proportion of an item pool remain unused. In the current 

study, the MII-SH method used 69% of the items and the remaining 31% were never 

administered, thus the usable pool size turned out to be 332 rather than 480 items. As a 

consequence, the observed average test overlap rate was much higher for MII-SH than that of 

STRC-SH (17.493% versus 10.589%). 

With the smallest test overlap rate, the randomized method can be considered to have the 

best test security control. However, STRC-SH performs quite similarly to that of the randomized 

method in terms of test security. As for measurement precision, the performance of STRC-SH is 

very close to MII-SH. Therefore, the overall performance of STRC-SH can be considered the 

best of the three methods employed in the current simulation.  

Finally, based on only two CAT item selection methods, the current study is an initial 

attempt to empirically investigate the severity of possible test security violations in CAT. More 

studies along this line of research are needed. The results clearly indicated that item selection 

methods being used in operational CAT could and should be evaluated by this kind of simulation 

study. A test security panel can then evaluate the observed severity indices generated by the item 

selection algorithm under investigation. In future studies, more issues should be examined, for 
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example, the effects of item pool size on the severity of possible test security violations, the 

influence of thieves’ memory capacities on security, the effectiveness of using a multiple item 

pool approach, test security issue may be evaluated conditionally with respect to ability, and 

different thievery models, such as based on the efforts thieves may be spending on stealing items 

according to the stakes of an exam, can be developed. 
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